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1. Introduction 
Oscillatory reactions, in which the concentrations of 

some intermediate species show regular periodic in- 
creases and decreases, have a surprisingly long history. 
Earliest reports go back as far as 1834,’s and oscillations 
in apparently homogeneous systems have been known 
since 192L3 Today, a wide range of such reactions have 
been well established. The most famous of these is the 
Belousov-Zhabotinskii (B-Z) reaction:& which involves 
the reduction of bromate by bromide ions. In the 
presence of ferroin, the color of the reacting mixture will 
oscillate spontaneously for several hours between red 
and blue with a period of 1-2 min. We now know how 
to design a wide range of variations on this basic redox 
reaction theme? A recent multiauthor book gives a 
detailed introduction to the behavior of such inorganic 
solution-phase os~illators.~ 

Other areas in which oscillatory reactions arise in- 
clude biochemical and biological systems,8 gas-phase 
reactions (including the oxidation of simple fuels9), and 
heterogeneous processes.1° Indeed, so widespread is 
this phenomenon that it is long overdue a place in 
standard kinetics courses a t  undergraduate and grad- 
uate levels. In fact, many modern texts now find rmm 
for a dozen or so pages1’ which usually discuss the B-Z 
reaction. Perhaps the main reason for it not having 
become a fully established part of our courses is that 
there is still a need for a very simple example of a 
“kinetic mechanism” through which it can be taught. 
The need for such modeling also holds in the research 
field. By paring away all unnecessary complications, 
we will be able most clearly to see the underlying 
chemistry in greatest detail. The aim of this article is, 
therefore, not to attempt the explanation of any par- 
ticular chemical system but rather to provide the sim- 
plest of all models, based on a somewhat hypothetical 
but clearly recognizable chemical set of reactions, which 
is capable of reproducing many of the features exhibited 
by such systems. We shall look at  two typical experi- 
mental setups: (i) reaction in a beaker, closed to the 
transport of matter (in particular, closed to the inflow 
of fresh reactants; we are less concerned about the 
possible escape of any gaseous products), and (ii) re- 
action in the chemical engineers’ continuously fed, 
well-stirred tank reactor (CSTR). 

All we require is the conversion of a reactant or 
precursor P to a final, stable product C via two inter- 
mediate species A and B. Thus, the reaction chain may 
be represented as 
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P - A + B - C  
The analysis of consecutive first-order reactions of this 
form is covered in elementary kinetics courses. This 
tells us that even then the concentrations of A and B 
will one after the other show an initial increase to a 
maximum value followed by a decrease. This can be 
taken as a first but frustrated indication of oscillatory 
behavior. 

For the present purpose the middle step in this pro- 
cess will be taken to occur through two parallel routes. 
One will be a direct, first-order reaction converting A 
to B. The other will involve chemical autocatalysis (a 
commonly observed feature of oscillatory reactions). 
For the latter we suppose that an increase in the con- 
centration of the product of the reaction (i.e., B) in- 
creases the rate of the reaction. Thus, we might find 
empirically a rate law for the catalyzed route of the form 

rate = klab2 

Here a and b are the concentrations of species A and 
B. 

Oscillatory behavior represents only one of the pos- 
sible complex phenomena which can be displayed by 
“nonlinear” chemical systems. We may also find 
multiple states (i.e., differing extents of reaction for 
otherwise identical experimental conditions), ignitions, 
extinctions, “washout”, hysteresis, slowing down, prop- 
agating fronts, spatial structures, and birhythmicity to 
name but a few. Simple adaptations of the prototype 
scheme mentioned above may be used to understand 
many of these additional patterns.12 

2. Background Kinetic Requirements 
In this section the basic chemical requirements for 

an oscillatory reaction are discussed briefly, and some 
of the special terms used in the literature are explained. 
The reader will then be encouraged to believe that the 
mathematical procedures to be employed include little 
beyond algebraic manipulation. 

For a chemical reaction to display oscillations there 
must be some mechanism for “feedback” within the 
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kinetics. This means that species formed somewhere 
along the chain must influence the rate of earlier re- 
action steps. Autocatalysis is a common realization of 
this requirement. Inhibition of a reaction by a product13 
can also play this role. In nonisothermal systems, the 
increase in temperature produced by heat released in 
an exothermic step can affect the reaction rate via the 
rate constant. Feedback implies “nonlinearity” in the 
reaction. This term relates to the reaction rate equa- 
tions. Nonlinearities arise naturally in chemistry. 
Bimolecular reactions are quadratic, involving the 
product of two concentrations (or the square of one). 
Cubic terms may, in rare cases, arise from termolecular 
reactions. Along with even more complicated forms, 
they may also be found as empirical rate laws, hiding 
a coupled sequence of fast and slow steps. (The Hz + 
Br, reaction is a well-known example involving frac- 
tional and inverse powers of H2, Br2, and HBr.) 

Oscillatory behavior also requires at  least two 
“independently variable” concentrations. In the sim- 
plest scheme 

A - B  
the reacting mixture may contain two chemical species 
but has only one independent variable. This is the case 
because there is a stoichiometric relationship implied 
by the chemistry. As the initial concentrations of A and 
B (ao and bo, respectively) are, in principle, knowable, 
the composition of the reaction is completely specified 
at  any time by the concentration of only one species, 
e.g., b. The other is then given by a = a. + bo - b. 

In the system 
A - B + C  

however, there are two independent concentrations. 
Now we have three chemical species but still only one 
stoichiometric, or mass-balance, equation, a = a. + bo 
+ co - b - c. Specifying the initial conditions and the 
value of b fixes the sum a + c. Only when two con- 
centrations are specified is the third, and hence the 
whole system, uniquely determined. 

In a well-stirred homogeneous system, kinetic rate 
equations involve derivatives of concentrations with 
respect to time, daldt,  etc. However we will see that 
a great deal of progress can be made in some circum- 
stances by concentrating on the times when these rates 
of change become zero (remember the stationary-state 
hypothesis). Under such conditions we have to deal 
only with algebraic equations. For isothermal chemical 
reactions these usually mean polynomials, and in the 
present paper, we shall seek the solutions only of 
quadratic equations. 

3. Model Kinetic Scheme for an Oscillatory 
Reaction 

In order to represent the kinetic model in “chemical 
terms” and as an aid to visualization, we can write it 
as a series of four overall steps: 
decay of precursor: P - A (rate = kop) (0) 

uncatalyzed step: A - B (rate = k,a) (3) 

catalyst decay: B - C (rate = kzb)  (2) 

autocatalysis: A + 2B - 3B (rate = klab2)  (1) 

(13) Higgins, J. Ind. Eng. Chem. 1967,59, 18. 

(The rather unusual numbering system is used to retain 
consistency with earlier work.14-17) The autocatalytic 
nature of the reaction is embodied in step 1, which will 
almost certainly not be an elementary process. 

The kinetic rate equations for such a mechanism 
would then be 

dp/dt = - k G  (3.1) 

(3.2) 

(3.3) 
A very helpful simplification which can be used when 

studying model kinetic schemes such as these is to 
neglect the consumption of the reactant (in this case 
P). We may justify this chemically when reaction 0 is 
a slow process so ko is small. If A and B are relatively 
reactive intermediate species, then their maximum 
concentrations may be many orders of magnitude 
smaller that the initial concentration of the precursors. 
Thus, the depletion of P, at  least during the initial 
period of the reaction, may be relatively unimportant. 
We will see later that results derived with this ap- 
proximation are very useful in estimating the behavior 
of the full system both qualitatively and quantitatively. 

Neglecting the reactant consumption replaces the 
term kop in eq 3.2 by kopo. This initial concentration 
of P is a constant for any given experiment but is also 
something which might be varied (a “parameter” of the 
system) over a series of experiments. With this ap- 
proximation the kinetic equations are 

(3.4) 

(3.5) 
The simplest way to deduce the behavior of a chemical 
system described by equations such as these is to look 
for the “stationary states”. These are values of the 
concentrations a and b at which both rates of change 
vanish simultaneously, i.e., for which 

kopo - klab2 - k3a = 0 (3.6) 

(3.7) 
Adding these two together leaves a simple result 

b, = (ko/kz)Po (3.8) 
for the stationary-state concentration of the auto- 
catalyst in terms of the (initial) concentration of the 
reactant P and two of the rate constants. 

The corresponding stationary-state concentration of 
A is obtained by rearranging (3.6) and substituting for 

(3.9) 
Equation 3.8 shows that the concentration of the 

autocatalyst B at the stationary state is proportional 
to the reactant concentration (Figure la): b, increases 
as po is increased. We have assumed, in neglecting 
reactant consumption, that step 0 is much slower than 
the other steps. Because of this, the factor k o / k z  will 

da/dt = kop - klab2 - k3a 

db/dt = klab2 + k 3 ~  - kzb 

da/dt = kopo - klab2 - k 3 ~  

db/dt = klab2 + k3a - kzb 

klab2 + k 3 ~  - kzb = 0 

b ,  
~ S S  = & P o /  [ k i ( k o P o / k ~ ) ~  + k31 
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Figure 1. Stationary-state concentrations of a and b as functions 
of the initial reactant concentration. Stable states are shown as 
solid lines, and unstable states as broken lines. The amplitudes 
of the oscillations about unstable states are also indicated. 

be small and b,, is a small fraction of po. 
The dependence of ass on po is also shown in Figure 

1. With low (initial) concentrations of the reactant P 
the stationary-state concentration of A is very small but 
increases as po is increased. However, ass does not in- 
crease indefinitely; instead, it attains a maximum value 

a8S,lIlaX = k2/2(k lk3)1 /2  when p o  = k2k31/2/kok11/2 

For larger values of the reactant concentration the 
stationary-state concentration of A decreases. The loci 
for a,, and b,, cross with 

am = b, = ( (k2  - k3)/kl) l / ’  at p o  = 
( I t 2  - k3)1/2k2/k11/2k0 

Stationary states are places at which all the time 
derivatives vanish. By analogy with systems in me- 
chanica,18 we may thus expect these to be the conditions 
to which concentrations tend and at  which they will 
then remain. However, this presumes that such states 
are “stable”. Stationary states may also be “unstable”, 
and it is common that oscillations begin as stability is 
lost. Stability and the method for its assessment are 
discussed in the next section. 

4. Local Stability of Stationary States and 
Oscillation 

The term “stability of a stationary state” refers to how 
the system reacts to small fluctuations or perturbations 

(18) Andronov, A. A.; Vitt ,  A. A.; Khakin, S. E. Theory of Oscillators; 

(19) Merkin, J. H.; Needham, D. J.; Scott, S .  K. h o c .  R. SOC. London, 

(20) Farr, W. W.; Scott, S. K .  Chem. Eng. Sci., in press. 

Pergamon: Oxford, 1966. 

A 1986,406, 299. 

when it is sitting at that state. If small displacements 
tend to decay back to the original stationary state, then 
it is a stable state. If, however, the state is unstable, 
these perturbations will grow in time. Stability or in- 
stability is determined by the sensitivity of the reaction 
rate equations to changes in the concentrations a and 
b. 

In particular, we need to find out how the rate of 
production of A varies as the concentration of A changes 
and how the rate of production of B depends upon the 
concentration of B. Mathematically, we are concerned 
with the partial derivatives d(da/dt)/da and d(db/ 
dt)/db. If increases in the concentrations a and b lead 
to decreases in both the net rates of production of A 
and of B, then both partial derivatives will be negative 
and the stationary state will be stable. 

In the present case a(da/dt)/da is always negative. 
For the autocatalyst, d(db/dt)/db may be negative or 
positive depending on the experimental conditions. The 
stationary state will be stable if the sum of the partial 
derivatives is negative. It will be unstable if the sum 
becomes positive. The changes in stability as p o  is 
varied for a typical set of the rate constants K O ,  etc., are 
indicated in Figure 1: where the stationary state is 
unstable it is shown as a broken line. 

The stationary state loses stability when d(da/dt)/da 
+ d(db/dt)/db becomes zero. We may use this condi- 
tion and the rate equations (3.4) and (3.5) to locate the 
conditions for the onset of instability: 
po2 = ( k 2 2 / 2 k 2 k l ) ( k 2  - 2k3 f [k,(kz - 8k3)]1/2)  (4.1) 

This equation will have two positive real roots, p1 and 
p z ,  provided kz  > 8k3. The higher root p1 lies close to 
the value at which the am and b curves cross. The 
other p z  occurs close to where %e a,, curve has its 
maximum. 

In between the two roots of (4.1) the stationary state 
is unstable. The system will not remain at such a state. 
However, there is no other set of concentrations for 
which the rates of change vanish simultaneously and 
hence there is no other stationary state to which the 
system can tend. Thus, the concentrations of A and B 
vary continuously in this region, describing sustained 
oscillatory behavior. If we plot the concentrations a and 
b against each other rather than against time, we see 
that they form a closed path or “limit cycle” in the “a-b 
phase plane”. We may also plot the stationary state as 
a point on such a diagram to show that the system 
oscillates around it. 

When po lies just inside the region of unstable states, 
the oscillations are of small amplitude and are virtually 
sinusoidal. As the reactant concentration is moved 
further into this region, however, the amplitudes in- 
crease. We may indicate economically both the sta- 
tionary-state and the oscillatory behavior about it as 
shown in Figure la,b. In the region of instability 
(dashed stationary-state locus) the maximum and 
minimum values achieved by the concentrations during 
the limit cycle oscillations for any given reactant con- 
centration are marked. These points form an envelope 
around the unstable part of the curves and indicate the 
growth in size as po varies. 

Figure 1 can give no indication of the period between 
successive oscillations. This also varies with the value 
of po. A t  the upper end of the oscillatory region near 
p1 the period is approximately 2.1r/k2. This lengthens 
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as p o  is decreased to 23/2~/(k2k3)1/2 a t  p2.  

5. Reactant Consumption Acknowledged: The 
Behavior with Decaying Concentration of 
Precursor 

The assumption that the concentration of the pre- 
cursor or reactant P does not vary but is given by p o  
at all times is useful, but it is clearly only an approxi- 
mation. In reality, the concentration will fall as P is 
converted to A. For the simple system chosen here 
there is a first-order decay, so a t  any time t after the 
start of the experiment (t = 0), the concentration of P 
will be 

p(t) = p(t=O) exp(-kot) = p o  exp(-kot) (5.1) 
A complete description of the behavior of the full set 

of rate equations requires numerical computation.lg 
However, for small values of ko (in fact this turns out 
to mean small compared with k2)  the results of the 
previous sections can be used to avoid this. Provided 
the concentration of P changes via reaction 0 on a much 
slower time scale than a and b change via the remaining 
steps, the latter may still see a pseudostationary value 
for p .  Thus, we may expect that the time-dependent 
forms for the concentrations of the intermediates are 
the stationary-state equations, (3.8) and (3.9), but with 
the constant po replaced by p(t) given by eq 5.1. This 
indeed is what is found, at  least over the values of po 
exp(-kot) for which the stationary state was stable in 
the previous section. 

Thus, if a system of pure P is set up with some initial 
concentration po (relatively large), there is a rapid initial 
increase in the concentrations of the intermediates from 
zero to the values given by eq 3.8 and 3.9. Following 
this there is a period of much slower change: the con- 
centration of the reactant falls exponentially while that 
of A increases and that of B decreases according to 
a(t) = 

~ V ’ P O  exp(-k0t)/[k&o2~o2 exp(-2kd + k~%l  (5.2) 

b(t) = ( ~ o / ~ z ) P o  exp(-kotl (5.3) 
This behavior persists until the concentration of the 
reactant has fallen to a value equal to pl, the condition 
at  which instability arose in the previous section. Here 
the time-dependent concentrations of a and b move 
away from the pseudostationary-state trajectories (5.2) 
and (5.3). Oscillations begin. In fact, they do not be- 
come apparent immediately; rather, they require a finite 
time to develop. This development time may be quite 
significant, and the concentration of P will continue to 
fall during this period. Nevertheless, provided k o / k 2  
and k3/k2 are both much less than unity, oscillatory 
excursions in the concentrations of A and B will be 
observed (see Figure 2). The concentration of the final 
product C increases smoothly during the pseudosta- 
tionary stage. During the oscillatory behavior, there are 
stepwise increases in c. The oscillatory period lasts as 
long as p(t) remains between the numerical values of 
p1 and p2.  Once the concentration of the reactant falls 
below the latter, however, the system moves back to- 
ward pseudosteady behavior. The concentrations of A 
and B show a damped oscillatory return to the solutions 
(5.2) and (5.3): a(t) then achieves ita maximum value, 
and after that all three concentrations p ,  a, and b fall 
monotonically to zero as t tends to infinity. The con- 
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Figure 2. Onset, growth, and decay of oscillations for system 
with decaying reactant concentration. (Parameters used for 
computation: ko = 1 x IO-$ s-l, kl = lo8 dm6 mol-2 s-l, k2 = 1 s-l, 
k ,  = 0.05 s-l, p o  = 0.1 mol dm-3.) 

centration of C continues to increase, smoothly again, 
during this final period, tending to a value equal to po. 
Thus, we can image the time-dependent system moving 
from right to left across Figure la, b as p decreases. 
Provided the rate constant for the uncatalyzed con- 
version of A to B (k3)  is relatively small compared with 
that for the decay of the autocatalyst ( I t 2 ) ,  the preos- 
cillatory period and the number of oscillations observed 
depend most strongly on ko. As an example, a system 
with ko = s-l shows 13 excursions. If ko is decreased 
to s-l, the oscillatory train has 130 peaks: for ko 
= 0.1 s-l there is only one pulse. In a closed system, 
oscillations must eventually cease because of the ex- 
haustion of the reactants. The remaining sections of 
this Account will go on to deal with “open” systems- 
those with a constant supply of fresh reactants and a 
route for the removal of the products. 

6. Autocatalysis in a Well-Stirred, Continuous 
Flow Reactor 

The CSTR can be easily visualized as a well-stirred 
tank with inflow tubes along which the various reac- 
tants are pumped at a total volumetric flow rate u and 
an outflow or exchaust with the same u. The constant 
inflow of material allows us to reduce our kinetic model 
when seeking the simplest oscillator. We no longer need 
a chemical precursor reactant P. Our model comprises, 
therefore, the following reactions: 

A + 2B - 3B (1) 
B-C (2) 
A - B  (3) 

The rate equations for a CSTR of volume V are then 

where treS = V/u  is the mean residence time of a mol- 
ecule in the reactor and a. and bo are the concentrations 
of A and B in the inflow (allowing for the dilution as 
the two streams mix, if necessary). 

In section 3, pseudosteady states were created arti- 
ficially by neglecting reactant consumption. Equations 
6.1 and 6.2 for a CSTR allow true steady or stationary 
states. The time derivatives may both become zero 
together, corresponding to time-independent conditions, 
without any approximation. The concentrations of A 
and B at the stationary state vary with the values of the 
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Figure 3. (a) Unique, (b) breaking wave, (c) isola, (d) mushroom, 
and (e) breaking wave + isola patterns for dependence of sta- 
tionary-state extent of reaction on residence time for CSTR. 

rate constants, etc. It is of particular interest to es- 
tablish how they vary as the residence time (or, equiv- 
alently, the flow rate) is changed. For some values of 
Izl, etc., there is one, and only one, stationary-state 
composition for any given residence time (e.g., Figure 
3a). Under different experimental conditions, however, 
a new phenomenon emerges. The derivatives become 
zero together for more than one set of a and b for the 
same I z , ,  t,,, etc.: there is more than one stationary 
state possible for some residence times. In these cases 
in order to decide how much A will be converted to B 
or C it is no longer sufficient only to specify the ex- 
perimental or boundary conditions. These are the same 
for each of the states. We need also to know something 
about the history of the reaction; i.e., we must also 
consider the initial conditions before we can decide 
which of the possible states will be realized. 

This phenomenon is known as musltiplicity. There 
are in fact four patterns of multiplicity for the present 
model, as shown in Figure 3b-e: these are known as (b) 
breaking wave, (c) isola, (d) mushroom, and (e) breaking 
wave + isola. The term (ao - a)/ao reflects the fraction 
of the inflowing reactant A which has reacted: it varies 
between 0 (no reaction) and 1 (complete conversion). 

The breaking wave is a simple S-shaped hysteresis 
loop. With an isola, the highest and middle extents of 
reaction form a closed curve. We can fall off the upper 
branch, as indicated by the downward arrows in Figure 
3c, either by increasing or decreasing t,,,. When this 
happens, the system moves to the lowest branch, with 
a corresponding sudden decrease in the conversion. 
This is known as extinction (in combustion) or washout 
(in solution-phase and biochemical reactions). Once the 
lowest branch has been reached, no variation of the 
residence time will cause a jump back to the upper 
branch. There is also no such way in which this system 
can be induced to jump to the middle branch. 

Mushroom patterns (Figure 3d) have two ranges of 
multiple stationary states, an S-shaped loop at low 

residence times (high flow rates) and a Z-shaped loop 
at  longer residence times. These are separated by a 
region over which there is only one stationary state, that 
corresponding to the upper branch. As well as two 
extinctions, there are two points at  which the system 
jumps from a low conversion state to one of high con- 
version. In combustion systems these are called igni- 
tions. For the S shape, ignition accompanies an increase 
in the residence time: at the other end of the mushroom 
it occurs as t,,, is reduced. 

The simple origins of these interesting phenomena 
are revealed in ref 12. Which of the five patterns will 
be observed in any given experiment is determined by 
(i) the ratio of the inflow concentrations bolao, (ii) the 
relative rates of the two reactions k , / k l a ~ ,  and (iii) the 
ratio k,/klao2. 

As well as showing multiple stationary states, the 
CSTR system allows instability. In fact, the middle 
solution is always unstable. One or both of the other 
two solutions may also lose stability under some con- 
ditions (known as points of Hopf bifurcation), and again 
these are often (but not always) the conditions at which 
oscillation begin. For example, if the system is sitting 
on the top branch of an isola or of a mushroom, the 
stationary state may become unstable as t,,, is in- 
creased. The concentrations of A and B then have three 
choices: (i) they may oscillate about the unstable state; 
(ii) if the other two stationary states exist, a and b may 
oscillate about all three states; (iii) if the lowest state 
exists and it is stable, the system may move to that. In 
case i and ii plotting a against b during the oscillations 
describes a stable limit cycle in the concentration phase 
plane (see section 4). 

Limit cycles which are unstable may also exist. The 
system cannot remain on such a cycle as even the 
smallest perturbations away from it grow. Unstable 
limit cycles do not therefore lead to observable, sus- 
tained oscillations. They do, however, play a significant 
role. They act as a boundary in the phase plane, sep- 
arating different regions of “attraction”. If we start off 
inside the limit cycle, we must eventually move to the 
stable stationary state which it surrounds. The allowed 
variations in the concentration cannot lead to a path 
in the phase plane which crosses the limit cycle. Con- 
versely, therefore, if the system starts from the outside 
of the cycle, it cannot approach the stationary state 
within. It must move either to a different stable state 
or to a stable limit cycle. 

Figure 4 shows the different ways in which limit cy- 
cles and stationary states may be combined for the 
cubic autocatalator, different ones being obtained by 
varying the experimental conditions. Thus, in Figure 
4f there are three stationary states available: one, 
corresponding to a high value of a, and low b,, is stable 
while the other two are unstable; the stationary state 
at lowest a, and high b, is surrounded by a stable limit 
cycle. Also indicated in the diagram is a boundary or 
“separatxix” passing through the middle, unstable state. 
The time-dependent behavior of such a system can be 
deduced as follows. The initial state corresponds to 
some point in the phase plane, and as the concentra- 
tions of A and B evolve in time they draw out a path. 
Such a path cannot cross the separatrix. Depending on 
which side the initial point is, the concentrations tend 
either to the stable stationary state or to the sustained 
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Figure 4. The 11 different “phase portraits” for the autocatalator. 

oscillatory state corresponding to continuous motion 
around the stable limit cycle. 

7. Conclusions and Future Extensions 
A very simple scheme, based on a single autocatalytic 

step, has been shown to be capable of accounting for 
a wide variety of “nonlinear” behavior in two different 
experimental situations: closed vessel and well-stirred 
open reactor. Autocatalysis is not widely found in 
conventional chemical systems but is commonly ob- 
served in oscillatory reactions21 and, along with auto- 
inhibition, is one of the results of the cooperative ef- 
fects13 which are so important in biochemical processes. 
It appears under another name in branched-chain re- 
actionsn such as the oxidations of almost all fuels. One 
difference between the present scheme and the behavior 
of some inorganic reactions systems, such as the B-Z 
reaction, is that the oscillations predicted are not of the 
relaxation type (periods of relatively slow change sep- 
arated by sharp jumps in concentrations). 

(21) Field, R. J.; Noyes, R. M. J. Am. Chem. SOC. 1974, 60, 1877. 
(22) Semenov, N. N. Chain Reactions; Oxford University Press: 

London, 1966. 

Recent work on the models discussed here has tended 
to focus upon their “robustness”: ensuring that the 
various patterns survive such tests as elaborating the 
kinetic scheme by adding extra competing reactions and 
recognizing some of the more subtle requirements of 
 thermodynamic^.^^ These are important questions as 
many other models fail these examinations, and at the 
same time the answers provide greater insight to aspects 
such as the relationship between oscillations and 
multiple stationary states. (Despite what is stated 
elsewhere even now, there is no link and each can be 
found in models which do not display the other al- 
though both have their roots in the chemical nonlin- 
earities.) In some cases these elaborations serve to 
increase the diversity of behavior. 

An extension of the present work has involved stud- 
ying the cubic autocatalysis model with reaction coupled 
to diffusionz4 either through a restricted zone (e.g., a 
simple cell) or the propagation of reactive fronts or 
chemical waves through an extended region. The ul- 
timate goal, however, is to build a bridge between model 
and real chemical systems. Experiments with the io- 
date-arsenite reaction, which has an approximately 
cubic autocatalytic rate law, can be explainedz6 in the 
terms of section 6, but the most exciting prospect re- 
mains the understanding of enzymatic and other bio- 
chemical systems to probe the regular oscillations such 
as circadian rhythms, including the human biological 
clock. In individual living systems or in collected 
populations, the choice between various possible sta- 
tionary states in regions of multiplicity may literally 
prove the difference between life and death, in which 
case the term “extinction” becomes unnervingly ap- 
propriate. Other examples of biochemical oscillations 
include glycolysis26 and cell division (mitosis):27 spatial 
periodicity and structure arise in morphogenesis and 
embryo development. 

(23) Gray, B. F.; Scott, S. K.; Gray, P. J.  Chem. SOC., Faraday Trans. 
I 1984,80,3409; 1985,81,1563. Ark, R.; Gray, P.; Scot, S. K. Chem. Eng. 
Sci., in press. Kay, S. R.; Scott, S. K.; Lignola, P. G. Roc.  R. SOC. London, 
A 1987,409,433. 

(24) Scott, S. K. Chem. Eng. Sci. 1987, 42, 307. 
(25) Ganapathisubramanian, N.; Showalter, K. J. Am. Chem. SOC. 

1984,106,816. 
(26) Sel’kov, E. E. Eur. J. Biochem. 1968,4,79. Goldbetter, A.; Ni- 

colis, G. h o g  Theor. Biol. 1976,4,65. Hess, B.; Boiteux, A. Annu. Rev. 
Biochem. 1971,40,237. 

(27) Tyson, J. J.; Kauffman, S. J.  Math. Biol. 1975, 1 ,  289. 


